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Abstract

We describe work at the University of Arizona and at Lawrence Berkeley Laboratory on

the development of a far infrared array camera for the Multiband Imaging Photometer on

SIRTF. The camera design uses stacked linear arrays of Ge:Ga photoconductors to

make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally

isolated J-FET readout are presented. Dark currents below 300 electrons s-I and readout

noises of 60 electrons have been attained. Operation of these types of detectors in an

ionizing radiation environment are discussed We present results of radiation testing

using both low energy gamma rays and protons. We also describe work on advanced

C-MOS cascode readouts that promise lower temperature operation and higher levels of

performance than the current J-FET based devices.

I. INTRODUCTION

SIRTF will be the premier infrared facility in the late 1990's and will represent a

dramatic increase in the sensitivity attainable in infrared astronomy. An important part of

this capability will be a far infrared camera being developed by the Multiband Imaging

Photometer for SIRTF (MIPS) team. The basic goal for this camera is to provide

diffraction limited imaging between 60-120 _n at a sensitivity limited only by the

natural backgrounds. Of equal importance in a real system are the requirements of good

stability, ability for precise calibration, and low power dissipation. We describe our

development efforts for this camera. This paper is divided into discussions of detector

development, J-FET-based readout arrays, and C-MOS readout technology.
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With the change in the SIRTF orbit fi-om a 900 km to a 100,000 km high earth ..

orbit baseline, there is now an increased premium for very low power dissipation,

resistance to ionizing radiation, and stable photometric performance. The far infrared

array development for MIPS has evolved to reflect these changes.

lI. DETECTOR DEVELOPMENT

Ionizing radiation effects can greatly complicate the operation of infrared

detectors in space. Two general problems have been identified that can make sensitive

observations with photoconductors difficult. First, individual particles (primarily high

energy protons) generate a large number of hole-electron pairs in the detector. Since all

the new systems under development will use integrating amplifiers because of their much

higher sensitivity, the result will be a large step in the input voltage of the amplifier until

a reset occurs. The Ge:Ga detectors planned for the far infrared camera operate at a

relatively low bias voltage (-50 mV), and this voltage step can represent a significant

bias change for the detector. Since some photoconductors exhibit long time constant

relaxation effects after bias changes (Young and Speed 1985), and we have devoted some

effort in characterizing the single hit behavior of the proposed Ge:Ga detector material.

The second radiation effect is the change in responsivity after an exposure to ionizing

radiation. During the IRAS mission, changes in excess of a factor of 5 were observed

after a passage through the South Atlantic Anomaly (IRAS Explanatory Supplement

1988). Since, a SIRTF goal is to do photometry to the 1 to 2% level, it will be important

to be able to understand and correct for these changes. In general, it has been observed

that these effects are more serious at lower infrared backgrounds, so we have begun a

program of radiation characterization at the very low backgrounds appropriate to SIRTF.

The bulk of the radiation testing has been done at Steward Observatory using a

10 mCi Americium2zll gamma ray source. This isotope primarily produces 60 keV

radiation. Because of the low energy of the gamma rays, the radiation is easily shielded

and collimated with simple brass fixtures. The test apparatus also includes a photon-tight

dewar with an internal infrared source and an integrating J-FET amplifier capable of

measuring currents below l electrons-l. Backgrounds in the dewar below

103 photons crn-2 s-1 at 100 pan have been observed. With the internal stimulator,

changes in responsivity can be observed even at ultra-low background levels, while

changes in the dark current can be determined with the stimulator tumed off.

Figure 1 shows the radiation induced responsivity change in a Ge:Ga detector

made from boule LBL 113 at two different infrared background levels. This material is

characteristic of the best currently available Ge:Ga photoconductors. At the high

background, the increase in responsivity appears to saturate at a factor of 5-6, while the

saturation value for the low background case is twice as high. Additionally, the dose

required for a given responsivity increase is significantly lower for the low background

case. These two effects are consistent with a self-annealling rate that is dependent on the

infrared background flux.
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Figure 1. Responsivity change in LBL 113 Ge:Ga detector with gamma ray exposure.

The very low thresholds for significant responsivity changes in Ge:Ga suggests

that the normal cosmic ray proton background may be enough to induce troublesome

effects in a SIRTF application. To investigate these effects, we have extended the

radiation measurements to lower infrared backgrounds (103 ph/s) and lower ionizing dose

rates (<10-6 rad/s). We have found a complicated behavior under these conditions.

There appears to be a persistent 2x responsivity increase with a very long time constant

and another component that decays with a background dependent rate.

We have also investigated the efficacy of various correction schemes for these

radiation effects. The methods we have considered are the bias boost as used in IRAS,

thermal anneal, and photon flooding. In general, the thermal anneal technique, where the

detector temperature is raised for a few seconds to -8K appears to be the most effective

and rapid method.
Since the ionizing flux for SIRTF will primarily be high energy protons rather

than gamma rays, it is important to understand the differences due to proton irradiation.

In particular, it is important to define the effects of the much larger energy per interaction

for the protons. Initial investigation of proton effects was made in January 1989 at the

Crocker Nuclear Laboratory cyclotron at the University of Califomia, Davis. This

facility can produce 60 MeV protons at fluxes ranging from a few tens of
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protons s "1 cm-2 to many orders of magnitude higher. The bulk of the run was spent

simulating a SIRTF-Iike cosmic ray flux to investigate the gradual increase in

responsivity. The cyclotron output was _,djusted to 60 MeV energy and an initial flux of

approximately one hit per 5 seconds in the 1 ram3 detector. Figure 2 shows an averaged

plot of the Ge:Ga detector current over nearly 12,000 seconds of exposure. Each point

represents the median average of three five-second integrations, with time given in

seconds after midnight. The initial photocurrent from the detector is approximately

2000 e/s due to the background in the dewar and is typical of the expected SIRTF

conditions. The lower envelope of the curve is a measure of the responsivity of the

detector, while samples well above the envelope are contaminated by particle hits. The

gradual increase in responsivity is evident as dose accumulates. The most dramatic

increase, however, only occurs after t=50500 seconds when the proton flux is increased

by a factor of 300 over the initial rate. At 52300 s and 52600 s, the detector is thermally

annealled dropping the responsivity to nearly the original level. For this ran, however,

the anneal temperature only reached 5.9K, and the recovery is not complete. The

responsivity drifts upward even though the proton exposure was stopped at t=51,000 s.

Clearly much additional work is needed to come up with an optimal radiation recovery

strategy.
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Figure 2. Photocurrent from Ge:Ga detector with low infrared background and proton

irradiation. Points are median averages of three 5-second integrations. Thermal anneal

cycles were initiated at 52300 and 52600 s.
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To summarize these radiation tests, the change in responsivity due to the cosmic

ray background is slow and predictable. Precise photometry should be possible with a

careful calibration strategy involving regular use of an internal reference source. The

single hit effects for this detector do not appear to be serious. LBL 113 recovers from

single particle hits rapidly and does not seem to have significant long time constants.

Moreover, the charge collection efficiency at the low bias voltages typical for these

detectors is less than 10% for both gamma ray and proton events.

III. J-FET DEMONSTRATION ARRAY

The design for the demonstration linear array must satisfy a number of conflicting

requirements. First, the design must isolate the J-FET integrators both thermally and

optically from the Ge:Ga detectors. Since the electronics must operate at a temperature

of 50 K while the detectors must operate below 2 K, a large temperature gradient must be

supported by the mount. At the same time, the support must have a very low thermal

conductivity to minimize the power dissipation in the unit. It is also desirable, however,

to have the first stage electronics as close as possible to the detectors to minimize

spurious pickup and microphonics. Finally, the design must be stackable into a two-

dimensional configuration with a high filling factor.

Figure 3 shows the basic configuration of the demonstration linear array. The 16-

channel J-FET integrator integrated circuit from Burr Brown/Infrared Laboratories and

an RCA CD4067 multiplexer are mounted on a metallized sapphire substrate using flip-

chip techniques. This substrate is physically suspended and thermally isolated by

thinwall 125 lain diameter polyimide tubes. These tubes also provide the electrical

connection to the J-FETs since they are metallized with 200 A of chromium and 2000 A

of gold. The Ge:Ga detectors axe also thermally isolated from the J-FET module using an

additional set of polyimide conductors. We have found that even though the frame for

the J-FET modules is nominally operating at 2K, this extra degree of isolation is

important for minimizing thermal interference. The aluminum frame and the detectors

are thermally sunk to the 2K heat station. To insure against photon leaks from the "hot"

J-FET electronics, we have made liberal use of indium gaskets and black Stycast epoxy

in the joints.

We have found the polyimide support system to have the desired combination of

ruggedness and low thermal conductivity. Previous versions of the module used glass

fibers or glass sheets for the suspension system. Although the glass fibers potentially

have a lower thermal conductivity, the polyimide support is superior due to its much

greater resistance to breakage.

We have demonstrated functional operation of several of these arrays, and the

latest tests show that the design meets the basic noise and dark current needs of a SIRTF

far-infrared imager. Table 1 summarizes some of the module characteristics. The low

dark current demonstrates the success of the thermal and optical isolation. It is important

to note that these performance figures are for fully multiplexed operation with a

computerized data acquisition system and any contribution due to digital noise is

included in the total noise. This array would be background noise limited in less than I0

seconds of integration if used in the SIRTF diffraction limited imager.
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Figure 3. Demonstration Array Sub-module Top View

Table 1. Demonstration Array Module Characteristics

Detector Material

Number of Channels

Detector Active Area

Detector Style

Module Thickness

Ambient Operating Temperature

J-FE'r Operating Temperature

Power Dissipation

Detector Responsivity
Dark Current

Read Noise

Ge:Ga

16

500 gm x 500 pan
Transverse contact

0.5 mm

2.0 K

50 K

0.5 mW/module

5A/W
<300 e-/s @ 50 mV bias

<60 e- for 32 s integration, 0 bias
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With the currentarray design, the detector f'dling factor is lower than desired.

Using the 500x500 lain detector size with 750 micron pixel spacing, the net filling factor

is only 44%. To improve on this situation, we are investigating a number of optical

concentration methods. One promising technology involves the anisotropic etching of

silicon (Kaminsky 1987). We have experimented with an etch of pyrocatechol and

ethylene diamine (P-ED). The etch rate for the 111 orientation is at least one hundred

times greater than for the 100 orientation. By using appropriate masks aligned to the

crystal orientation in 100 wafers, we have produced arrays of pyramid-shaped solid cones

that could act as solid concentrators. We are doing analysis to determine whether the

opening angle (which is fixed by the crystal planes in silicon) is appropriate for this

application.

IV. C-MOS READOUT DEVELOPMENT

Although the basic requirements of a SIRTF far infrared camera could be met

with stacked J-FET based modules, we have been exploring possible enhancements both

in the size of the array and performance of the readout. Significant advances in the noise

performance of C-MOS analog circuits have been made in the past few years. In

particular, the noise now seen for a new 1.25 la.m process is only 200 nV Hz -1/2 at 1 Hz

(1000 square lxrn gate area). This noise level is about a factor of five better than devices

made with the older 3 _rn technology, and with this level of performance, C-MOS

readouts can be competitive with J-FETs.

C-MOS circuit technology has a number of additional advantages over J-FET

technology. C-MOS fabrication has a density advantage of J-FET designs. For the

SIRTF imager application, for example, it is possible to produce at least a 32-channel

readout with multiplexer using very relaxed design rules. In fact, additional circuitry to

do simple signal processing such as baseline correction can be incorporated directly on

the integrated circuit. Finally, CMOS circuits can operate at lower temperatures than

their J-FET counterparts. For a far infrared camera, the thermal and photon isolation of

the amplifier from the detectors is a significant complication. By running the readout at

lower temperatures, this problems diminishes greatly.

To explore the applicability of these new technologies to high performance

infrared focal plane arrays, this program has funded the fabrication of test circuits at

Amber Engineering. Four input circuits were considered to cover a range of possibilities.

Because of the flexibility of C-MOS fabrication processing, all four test circuits were

placed on a single die. The test circuits consisted of p- and n-channel versions of the

source follower and common source cascode amplifier. The use of the common cascode

circuit for infrared array readouts is discussed in more detail in the accompanying paper

by Woolaway and Young (1989). The most important difference between the cascode

and source follower configurations is that the cascode provides a factor of 20-30 gain.

Although the cascode should theoretically have no noise advantage over the source

follower, the extra gain makes it significantly easier from a systems standpoint to meet

the noise potential of the MOSFETs. Table 2 gives some of the measured performance

values for the test circuits at a temperature of 77K. Even though the input capacitance is
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relatively large, the noise level for the cascode circuits is excellent. We have also carried

the testing to lower temperatures. For the p-channel cascode, the noise performance

holds down to 30K, below which there is a gradual increase in low frequency noise. At

the lowest temperature measured (2 K) the circuit continues to function but with a
readout noise of 30 e-.

Table 2. Performance of AE133-2A Test Circuits

Circuit Voltage Gain

n-channel Cascode 27.6

p-channel Cascode 26.9

p-channel Follower 0.84
n-channel Follower 0.75

Input Capacitance RMS Noise

(pF) (e- Hz-1/2)
................................

0.68 7

0.66 8

0.43 38

0.44 *

Temperature = 77K

Power Dissipation = 114 IxW

* Not measured due to excessive leakage current in input test diode.

The excellent performance of the common source cascode circuits gave us the

confidence to go ahead with the fabrication of a 32-channel readout based on these circuit

concepts. If the performance of these parts attains the predicted levels, the task of

fabricating full far-infrared arrays will be greatly simplified. The integrated circuit is

being fabricated using a 2 lain design rule p-channel process. P-channel is used for its

superior low temperature operation. In addition to the cascode input stages, the circuit

includes an AC-coupled driver stage and a serial multiplexer. The purpose of the AC-

coupling is to remove any offset vortages in the input stage and results in an improved

dynamic range for the circuit. The multiplexer is a shift register-transmission gate

configuration that features break-before-make operation. Table 3 gives some of the

predicted characteristics of the circuit.

One of the more challenging constraints on the design was the desire to minimize

the power dissipation in the circuit. Minimizing the power dissipation is especially

important in the SIRTF high orbit context since parasitic and aperture heat loads are very

low. We were able to meet the power dissipation goals by maintaining only a minimal

continuous current in the input cascode stage. The subsequent driver and logic stages are

operated in the switched mode, drawing current only when a given channel is being read

out. With this power management strategy, the total power dissipation for a 32 x 32

array would be only 5 mW.
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Table 3. Design Characteristics of lx32 Readout

Input configuration

Reset accuracy

Multiplexing

Sample rate

Output circuit

Input stage gain

Maximum input excursion

Full well capacity

Power dissipation

Input capacitance
Read noise

Operating Temperature

p-channel common-source cascode

limited by kTC

serial shift register
break before make

up to 32 x 10 Hz
current-mode

15-20

20 mV

1.2 x 106 electrons

156 pW

9 pF

50 e-, 0.01-100 Hz

<30 K

The expected performance of this readout should demonstrate the usefulness of

custom circuits for infrared astronomical applications and extends the application of

MOS readouts to high input capacitance applications. The benefits of low noise, low

power dissipation and higher levels of integration should enable us to more fully exploit

the power of SIRTF with a large format far-infrared camera.
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